Structural properties of orderings on multisets

Jacek Cichoń Marcin Zawada Szymon Żeberski

Hejnice 2009

Definition (Multisets)
The family of all multisets over a set X is denoted by $\mathcal{M}(X)$, e.g.

$$
\mathcal{M}(X)=\left\{A \in \mathbb{N}^{X}:|\operatorname{supp}(A)|<\aleph_{0}\right\}
$$

where $\operatorname{supp}(A)=\{x \in X: A(x) \neq 0\}$.

Definition (Dershowitz-Manna Ordering)
Assume that (X, R) is a binary relation system.
For $A, B \in \mathcal{M}(X)$ we put

\[

\]

Definition (Dershowitz-Manna Ordering)
Assume that (X, R) is a binary relation system.
For $A, B \in \mathcal{M}(X)$ we put

$$
A R_{m u l t}^{X} B
$$

\Uparrow
$(A \neq B) \wedge(\forall x \in X)(A(x)>B(x) \rightarrow(\exists y \in Y)(x R y \wedge A(y)<B(y)))$.
We put

$$
\mathcal{M}(X, R)=\left(\mathcal{M}(X), R_{m u l t}^{X}\right)
$$

Notation
Suppose that (X, R) and (Y, S) are two binary relation systems.

- if $X \cap Y=\emptyset$ then $(X, R) \oplus(Y, S)=(X \cup Y, R \cup S)$

Notation

Suppose that (X, R) and (Y, S) are two binary relation systems.

- if $X \cap Y=\emptyset$ then $(X, R) \oplus(Y, S)=(X \cup Y, R \cup S)$
- if $X \cap Y=\emptyset$ then $(X, R) \triangleleft(Y, S)=(X \cup Y, R \cup S \cup(X \times Y))$

Notation

- $(X, R) \otimes(Y, S)=(X \times Y, R \otimes S)$, where

$$
(x, y) R \otimes S\left(x^{\prime}, y^{\prime}\right)
$$

\Uparrow
$\left((x, y) \neq\left(x^{\prime}, y^{\prime}\right)\right) \wedge\left(\left(x=x^{\prime}\right) \vee\left(x R x^{\prime}\right)\right) \wedge\left(\left(y=y^{\prime}\right) \vee\left(y S y^{\prime}\right)\right)$.

- $(X, R) \otimes_{\text {lex }}(Y, S)=\left(X \times Y, R \otimes_{\text {lex }} S\right)$, where

Notation

- $(X, R) \otimes(Y, S)=(X \times Y, R \otimes S)$, where

$$
(x, y) R \otimes S\left(x^{\prime}, y^{\prime}\right)
$$

\Uparrow
$\left((x, y) \neq\left(x^{\prime}, y^{\prime}\right)\right) \wedge\left(\left(x=x^{\prime}\right) \vee\left(x R x^{\prime}\right)\right) \wedge\left(\left(y=y^{\prime}\right) \vee\left(y S y^{\prime}\right)\right)$.

- $(X, R) \otimes_{\text {lex }}(Y, S)=\left(X \times Y, R \otimes_{\text {lex }} S\right)$, where

$$
\begin{gathered}
(x, y) R \otimes_{\text {lex }} S\left(x^{\prime}, y^{\prime}\right) \\
\Uparrow \\
\left(\left(x \neq x^{\prime}\right) \wedge\left(x R x^{\prime}\right)\right) \vee\left(\left(x=x^{\prime}\right) \wedge\left(y \neq y^{\prime}\right) \wedge\left(y S y^{\prime}\right)\right) .
\end{gathered}
$$

Theorem
If (X, R) and (Y, S) are binary relation systems and $X \cap Y=\emptyset$ then

1. $\mathcal{M}((X, R) \oplus(Y, S)) \simeq \mathcal{M}(X, R) \otimes \mathcal{M}(Y, S)$

Theorem
If (X, R) and (Y, S) are binary relation systems and $X \cap Y=\emptyset$ then

1. $\mathcal{M}((X, R) \oplus(Y, S)) \simeq \mathcal{M}(X, R) \otimes \mathcal{M}(Y, S)$
2. $\mathcal{M}((X, R) \triangleleft(Y, S)) \simeq \mathcal{M}(Y, S) \otimes_{\text {lex }} \mathcal{M}(X, R)$

Corollary
If α is an ordinal number then $\mathcal{M}(\alpha, \in) \simeq\left(\omega^{\alpha}, \in\right)$.
$\mathcal{M}(0, \epsilon)=(\emptyset, \epsilon)$ and $\mathcal{M}(1, \epsilon) \simeq(\omega, \epsilon)$.

$$
\mathcal{M}(\alpha+1, \epsilon) \simeq \mathcal{M}((\alpha, \epsilon) \triangleleft(1, \epsilon)) \simeq \mathcal{M}(1, \epsilon) \otimes_{\operatorname{lex}} \mathcal{M}(\alpha, \epsilon)
$$

SO

$$
\begin{gathered}
\text { ot }(\mathcal{M}(\alpha+1, \in))=\text { ot }\left(\mathcal{M}(1, \in) \otimes_{\text {lex }} \mathcal{M}(\alpha, \in)\right)= \\
\text { ot }\left((\omega, \in) \otimes_{\text {lex }}\left(\omega^{\alpha}, \in\right)\right)=\omega^{\alpha} \cdot \omega=\omega^{\alpha+1}
\end{gathered}
$$

Corollary
If α is an ordinal number then $\mathcal{M}(\alpha, \in) \simeq\left(\omega^{\alpha}, \in\right)$.
Proof
$\mathcal{M}(0, \in)=(\emptyset, \in)$ and $\mathcal{M}(1, \in) \simeq(\omega, \in)$.

$$
\mathcal{M}(\alpha+1, \epsilon) \simeq \mathcal{M}((\alpha, \epsilon) \triangleleft(1, \epsilon)) \simeq \mathcal{M}(1, \in) \otimes_{\text {lex }} \mathcal{M}(\alpha, \in),
$$

$$
\begin{gathered}
\text { ot }(\mathcal{M}(\alpha+1, \in))=\text { ot }\left(\mathcal{M}(1, \in) \otimes_{\operatorname{lex}} \mathcal{M}(\alpha, \in)\right)= \\
\text { ot }\left((\omega, \in) \otimes_{\text {lex }}\left(\omega^{\alpha}, \in\right)\right)=\omega^{\alpha} \cdot \omega=\omega^{\alpha+1}
\end{gathered}
$$

Corollary
If α is an ordinal number then $\mathcal{M}(\alpha, \epsilon) \simeq\left(\omega^{\alpha}, \in\right)$.
Proof
$\mathcal{M}(0, \epsilon)=(\emptyset, \epsilon)$ and $\mathcal{M}(1, \epsilon) \simeq(\omega, \epsilon)$.

$$
\mathcal{M}(\alpha+1, \epsilon) \simeq \mathcal{M}((\alpha, \epsilon) \triangleleft(1, \epsilon))
$$

SO
ot $(\mathcal{M}(\alpha+1, \in))=\operatorname{ot}\left(\mathcal{M}(1, \in) \otimes_{\text {lex }} \mathcal{M}(\alpha, \in)\right)=$ ot $\left((\omega, \in) \otimes_{\text {lex }}\left(\omega^{\alpha}, \in\right)\right)=\omega^{\alpha} \cdot \omega=\omega^{\alpha+1}$.

Corollary
If α is an ordinal number then $\mathcal{M}(\alpha, \epsilon) \simeq\left(\omega^{\alpha}, \in\right)$.
Proof
$\mathcal{M}(0, \epsilon)=(\emptyset, \epsilon)$ and $\mathcal{M}(1, \epsilon) \simeq(\omega, \epsilon)$.

$$
\mathcal{M}(\alpha+1, \epsilon) \simeq \mathcal{M}((\alpha, \epsilon) \triangleleft(1, \epsilon)) \simeq \mathcal{M}(1, \epsilon) \otimes_{\text {lex }} \mathcal{M}(\alpha, \epsilon),
$$

SO
$\operatorname{ot}(\mathcal{M}(\alpha+1, \in))=\operatorname{ot}\left(\mathcal{M}(1, \in) \otimes_{\text {lex }} \mathcal{M}(\alpha, \in)\right)=$ ot $\left((\omega, \in) \otimes_{\operatorname{lex}}\left(\omega^{\alpha}, \in\right)\right)=\omega^{\alpha} \cdot \omega=\omega^{\alpha+1}$

Corollary
If α is an ordinal number then $\mathcal{M}(\alpha, \epsilon) \simeq\left(\omega^{\alpha}, \epsilon\right)$.
Proof
$\mathcal{M}(0, \epsilon)=(\emptyset, \epsilon)$ and $\mathcal{M}(1, \epsilon) \simeq(\omega, \epsilon)$.

$$
\mathcal{M}(\alpha+1, \epsilon) \simeq \mathcal{M}((\alpha, \epsilon) \triangleleft(1, \epsilon)) \simeq \mathcal{M}(1, \epsilon) \otimes_{\text {lex }} \mathcal{M}(\alpha, \epsilon),
$$

so

$$
\begin{gathered}
\operatorname{ot}(\mathcal{M}(\alpha+1, \epsilon))=o t\left(\mathcal{M}(1, \epsilon) \otimes_{\text {lex }} \mathcal{M}(\alpha, \epsilon)\right)= \\
o t\left((\omega, \epsilon) \otimes_{\text {lex }}\left(\omega^{\alpha}, \in\right)\right)=\omega^{\alpha} \cdot \omega=\omega^{\alpha+1} .
\end{gathered}
$$

Suppose now that λ is a limit ordinal number.

$$
\operatorname{ot}(\mathcal{M}(\lambda, \in))=\bigcup_{\alpha<\lambda} \operatorname{ot}(\mathcal{M}(\alpha, \in))
$$

Suppose now that λ is a limit ordinal number.

$$
\operatorname{ot}(\mathcal{M}(\lambda, \in))=\bigcup_{\alpha<\lambda} \operatorname{ot}(\mathcal{M}(\alpha, \in))=\bigcup_{\alpha<\lambda} \omega^{\alpha}=\omega^{\lambda}
$$

Corollary [Dershowitz, Manna]

Suppose that (X, R) is a well-founded binary relation system. Then $\mathcal{M}(X, R)$ is a well-founded binary relation system.

Definition (Well quasi-ordering)
A quasi-ordering (Q, \leq) is a well-quasi-ordering (wqo) if for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ from Q there exist $i<j \in \mathbb{N}$ such that $a_{i} \leq a_{j}$.

Remark
Assume that (X, \leq) is a quasi-order. TFAAE:

1. (X, \leq) is wqo.
2. (X, \leq) is well-founded and has no infinite antichains.
3. Any extension of the relation \leq to a linear ordering \leq^{*} of X is
a well-ordering.

Definition (Well quasi-ordering)
A quasi-ordering (Q, \leq) is a well-quasi-ordering (wqo) if for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ from Q there exist $i<j \in \mathbb{N}$ such that $a_{i} \leq a_{j}$.

Remark
Assume that (X, \leq) is a quasi-order. TFAAE:

1. (X, \leq) is wqo.
2. (X, \leq) is well-founded and has no infinite antichains.
3. Any extension of the relation \leq to a linear ordering \leq^{*} of X is
a well-ordering.

Definition (Well quasi-ordering)
A quasi-ordering (Q, \leq) is a well-quasi-ordering (wqo) if for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ from Q there exist $i<j \in \mathbb{N}$ such that $a_{i} \leq a_{j}$.

Remark

Assume that (X, \leq) is a quasi-order. TFAAE:

1. (X, \leq) is wqo.
2. (X, \leq) is well-founded and has no infinite antichains.
a well-ordering.

Definition (Well quasi-ordering)

A quasi-ordering (Q, \leq) is a well-quasi-ordering (wqo) if for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ from Q there exist $i<j \in \mathbb{N}$ such that $a_{i} \leq a_{j}$.

Remark

Assume that (X, \leq) is a quasi-order. TFAAE:

1. (X, \leq) is wqo.
2. (X, \leq) is well-founded and has no infinite antichains.
3. Any extension of the relation \leq to a linear ordering \leq^{*} of X is a well-ordering.

Theorem

Assume that partial ordering (X, R) is a well-quasi-ordering. Then $\mathcal{M}(X, R)$ is a well-quasi ordering, too.

Proof
Suppose $\left(\mathcal{M}(X), R_{m u l t}^{X}\right)$ is not a well-quasi-ordering.
There is a one-to-one sequence $f_{n}: X \rightarrow \mathbb{N}$ of elements of $\mathcal{M}(X)$
such that for $i<j$ we have that $\neg f_{i} R_{\text {mult }}^{X} f_{j}$.
Let us define

$$
X_{i}^{j}=\left\{x \in X: f_{i}(x)>f_{j}(x) \wedge(\forall y)\left(x R y \rightarrow f_{i}(y) \geq f_{j}(y)\right)\right\} .
$$

Let x_{i}^{j} be any R-maximal element of X_{i}^{j}.

Proof
Suppose $\left(\mathcal{M}(X), R_{m u l t}^{X}\right)$ is not a well-quasi-ordering. There is a one-to-one sequence $f_{n}: X \rightarrow \mathbb{N}$ of elements of $\mathcal{M}(X)$ such that for $i<j$ we have that $\neg f_{i} R_{m u l t}^{X} f_{j}$.

$$
X_{i}^{j}=\left\{x \in X: f_{i}(x)>f_{j}(x) \wedge(\forall y)\left(x R y \rightarrow f_{i}(y) \geq f_{j}(y)\right)\right\} .
$$

Proof

Suppose $\left(\mathcal{M}(X), R_{m u l t}^{X}\right)$ is not a well-quasi-ordering. There is a one-to-one sequence $f_{n}: X \rightarrow \mathbb{N}$ of elements of $\mathcal{M}(X)$ such that for $i<j$ we have that $\neg f_{i} R_{\text {mult }}^{X} f_{j}$.
Let us define

$$
X_{i}^{j}=\left\{x \in X: f_{i}(x)>f_{j}(x) \wedge(\forall y)\left(x R y \rightarrow f_{i}(y) \geq f_{j}(y)\right)\right\}
$$

Proof

Suppose $\left(\mathcal{M}(X), R_{m u l t}^{X}\right)$ is not a well-quasi-ordering. There is a one-to-one sequence $f_{n}: X \rightarrow \mathbb{N}$ of elements of $\mathcal{M}(X)$ such that for $i<j$ we have that $\neg f_{i} R_{\text {mult }}^{X} f_{j}$.
Let us define

$$
X_{i}^{j}=\left\{x \in X: f_{i}(x)>f_{j}(x) \wedge(\forall y)\left(x R y \rightarrow f_{i}(y) \geq f_{j}(y)\right)\right\}
$$

$0<\left|X_{i}^{j}\right|<\omega$.
Let x_{i}^{j} be any R-maximal element of X_{i}^{j}.

Proof

Suppose $\left(\mathcal{M}(X), R_{\text {mult }}^{X}\right)$ is not a well-quasi-ordering. There is a one-to-one sequence $f_{n}: X \rightarrow \mathbb{N}$ of elements of $\mathcal{M}(X)$ such that for $i<j$ we have that $\neg f_{i} R_{\text {mult }}^{X} f_{j}$.
Let us define

$$
X_{i}^{j}=\left\{x \in X: f_{i}(x)>f_{j}(x) \wedge(\forall y)\left(x R y \rightarrow f_{i}(y) \geq f_{j}(y)\right)\right\}
$$

$0<\left|X_{i}^{j}\right|<\omega$.
Let x_{i}^{j} be any R-maximal element of X_{i}^{j}.

For $i<j$

$$
f_{i}\left(x_{i}^{j}\right)>f_{j}\left(x_{i}^{j}\right) \text { and } \forall y x_{i}^{j} R y \rightarrow f_{i}(y)=f_{j}(y)
$$

For $n<i, j$ and y such that $x_{n}^{i}=x_{n}^{j} R y$

$$
f_{i}(y)=f_{j}(y)=f_{n}(y)
$$

Consider the set $X_{0}=\left\{x_{0}^{j}: j>0\right\}$. Since it is a subset of suppfo,
it is a finite set.
Define a_{0} to be an element of X_{0} such that $A_{0}=\left\{j: X_{0}^{j}=a_{0}\right\}$ is infinite.

For $i<j$

$$
f_{i}\left(x_{i}^{j}\right)>f_{j}\left(x_{i}^{j}\right) \text { and } \forall y x_{i}^{j} R y \rightarrow f_{i}(y)=f_{j}(y)
$$

For $n<i, j$ and y such that $x_{n}^{i}=x_{n}^{j} R y$

$$
f_{i}(y)=f_{j}(y)=f_{n}(y)
$$

Consider the set $X_{0}=\left\{x_{0}^{j}: j>0\right\}$. Since it is a subset of suppfo,
it is a finite set.
Define a_{0} to be an element of X_{0} such that $A_{0}=\left\{j: X_{0}^{J}=a_{0}\right\}$ is infinite.

For $i<j$

$$
f_{i}\left(x_{i}^{j}\right)>f_{j}\left(x_{i}^{j}\right) \text { and } \forall y x_{i}^{j} R y \rightarrow f_{i}(y)=f_{j}(y)
$$

For $n<i, j$ and y such that $x_{n}^{i}=x_{n}^{j} R y$

$$
f_{i}(y)=f_{j}(y)=f_{n}(y)
$$

Consider the set $X_{0}=\left\{x_{0}^{j}: j>0\right\}$. Since it is a subset of suppf f_{0}, it is a finite set.
Define a_{0} to be an element of X_{0} such that $A_{0}=\left\{j: X_{0}^{j}=a_{0}\right\}$ is infinite.

For $i<j$

$$
f_{i}\left(x_{i}^{j}\right)>f_{j}\left(x_{i}^{j}\right) \text { and } \forall y x_{i}^{j} R y \rightarrow f_{i}(y)=f_{j}(y) .
$$

For $n<i, j$ and y such that $x_{n}^{i}=x_{n}^{j} R y$

$$
f_{i}(y)=f_{j}(y)=f_{n}(y)
$$

Consider the set $X_{0}=\left\{x_{0}^{j}: j>0\right\}$. Since it is a subset of suppfo, it is a finite set.
Define a_{0} to be an element of X_{0} such that $A_{0}=\left\{j: x_{0}^{j}=a_{0}\right\}$ is infinite.

In the n-th step of construction we have a finite sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) and a sequence of infinite sets

In the n-th step of construction we have a finite sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) and a sequence of infinite sets
$\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq \ldots \supseteq A_{n-1}$ such that
$\forall i<n A_{n-1} \subseteq\left\{j: a_{i}=x_{\min A_{i}}^{j}\right\}$.
Consider $X_{n}=\left\{x_{\min A_{n-1}}^{j}: j \in A_{n-1}\right\} \subseteq \operatorname{suppf}_{\min } A_{n-1}$
Define $a_{n} \in X_{n}$ and $A_{n} \subseteq A_{n-1}$ in the way that
$A_{n}=\left\{j \in A_{n-1}: x_{\min A_{n-1}}^{j}=a_{n}\right\}$ is infinite.
Finally we get a sequence $\left(a_{n}\right)$ which witnesses that (X, R) is not a well-quasi-ordering, since for $i<j$ we have that $\neg a_{i} R a_{j}$.

In the n-th step of construction we have a finite sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) and a sequence of infinite sets
$\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq \ldots \supseteq A_{n-1}$ such that
$\forall i<n A_{n-1} \subseteq\left\{j: a_{i}=x_{\min A_{i}}^{j}\right\}$.
Consider $X_{n}=\left\{x_{\min A_{n-1}}^{j}: j \in A_{n-1}\right\} \subseteq \operatorname{suppf}_{\min A_{n-1}}$.
Define $a_{n} \in X_{n}$ and $A_{n} \subseteq A_{n-1}$ in the way that
$A_{n}=\left\{j \in A_{n-1}: x_{\min A_{n-1}}^{j}=a_{n}\right\}$ is infinite.
Finally we get a sequence $\left(a_{n}\right)$ which witnesses that (X, R) is not a well-quasi-ordering, since for $i<j$ we have that $\neg a_{i} R a_{j}$.

In the n-th step of construction we have a finite sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) and a sequence of infinite sets
$\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq \ldots \supseteq A_{n-1}$ such that
$\forall i<n A_{n-1} \subseteq\left\{j: a_{i}=x_{\min A_{i}}^{j}\right\}$.
Consider $X_{n}=\left\{x_{\min A_{n-1}}^{j}: j \in A_{n-1}\right\} \subseteq \operatorname{suppf}_{\min A_{n-1}}$.
Define $a_{n} \in X_{n}$ and $A_{n} \subseteq A_{n-1}$ in the way that $A_{n}=\left\{j \in A_{n-1}: x_{\min A_{n-1}}^{j}=a_{n}\right\}$ is infinite.

In the n-th step of construction we have a finite sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) and a sequence of infinite sets
$\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq \ldots \supseteq A_{n-1}$ such that
$\forall i<n A_{n-1} \subseteq\left\{j: a_{i}=x_{\min A_{i}}^{j}\right\}$.
Consider $X_{n}=\left\{x_{\min A_{n-1}}^{j}: j \in A_{n-1}\right\} \subseteq \operatorname{suppf}_{\min A_{n-1}}$.
Define $a_{n} \in X_{n}$ and $A_{n} \subseteq A_{n-1}$ in the way that
$A_{n}=\left\{j \in A_{n-1}: x_{\min A_{n-1}}^{j}=a_{n}\right\}$ is infinite.
Finally we get a sequence $\left(a_{n}\right)$ which witnesses that (X, R) is not a well-quasi-ordering, since for $i<j$ we have that $\neg a_{i} R a_{j}$.

Theorem
Suppose that $(X,<)$ is a dense linear ordering without minimal element. Then $\mathcal{M}(X,<)$ is a dense linear ordering, too.

Corollary
$\mathcal{M}(\mathbb{Q},<) \simeq\left(\mathbb{Q}^{\geq 0},<\right)$

Theorem

Suppose that $(X,<)$ is a dense linear ordering without minimal element. Then $\mathcal{M}(X,<)$ is a dense linear ordering, too.

Corollary
$\mathcal{M}(\mathbb{Q},<) \simeq\left(\mathbb{Q}^{\geq 0},<\right)$

Thank you for your attention.

