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Definition (Multisets)

The family of all multisets over a set X is denoted by M(X ), e.g.

M(X ) = {A ∈ NX : |supp(A)| < ℵ0},

where supp(A) = {x ∈ X : A(x) 6= 0}.



Definition (Dershowitz-Manna Ordering)

Assume that (X ,R) is a binary relation system.
For A,B ∈M(X ) we put

A RX
mult B

m

(A 6= B)∧(∀x ∈ X )(A(x) > B(x) → (∃y ∈ Y )(x R y∧A(y) < B(y))).

We put
M(X ,R) = (M(X ), RX

mult ).



Definition (Dershowitz-Manna Ordering)

Assume that (X ,R) is a binary relation system.
For A,B ∈M(X ) we put

A RX
mult B

m

(A 6= B)∧(∀x ∈ X )(A(x) > B(x) → (∃y ∈ Y )(x R y∧A(y) < B(y))).

We put
M(X ,R) = (M(X ), RX

mult ).



Notation
Suppose that (X ,R) and (Y ,S) are two binary relation systems.

I if X ∩ Y = ∅ then (X ,R)⊕ (Y ,S) = (X ∪ Y ,R ∪ S)

I if X ∩Y = ∅ then (X ,R) / (Y ,S) = (X ∪Y ,R ∪S ∪ (X ×Y ))
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I (X ,R)⊗ (Y ,S) = (X × Y ,R ⊗ S), where

(x , y)R ⊗ S(x ′, y ′)

m

((x , y) 6= (x ′, y ′)) ∧ ((x = x ′) ∨ (xRx ′)) ∧ ((y = y ′) ∨ (ySy ′)).
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m

((x 6= x ′) ∧ (xRx ′)) ∨ ((x = x ′) ∧ (y 6= y ′) ∧ (ySy ′)).
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Theorem
If (X ,R) and (Y ,S) are binary relation systems and X ∩ Y = ∅
then

1. M((X ,R)⊕ (Y ,S)) 'M(X ,R)⊗M(Y ,S)

2. M((X ,R) / (Y ,S)) 'M(Y ,S)⊗lex M(X ,R)
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Corollary

If α is an ordinal number then M(α,∈) ' (ωα,∈).

Proof
M(0,∈) = (∅,∈) and M(1,∈) ' (ω,∈).

M(α + 1,∈) 'M((α,∈) / (1,∈)) 'M(1,∈)⊗lex M(α,∈),

so
ot(M(α + 1,∈)) = ot (M(1,∈)⊗lex M(α,∈)) =

ot ((ω,∈)⊗lex (ωα,∈)) = ωα · ω = ωα+1.
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Suppose now that λ is a limit ordinal number.

ot(M(λ,∈)) =
⋃
α<λ

ot(M(α,∈)) =
⋃
α<λ

ωα = ωλ.
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Corollary [Dershowitz, Manna]

Suppose that (X ,R) is a well-founded binary relation system.
Then M(X ,R) is a well-founded binary relation system.



Definition (Well quasi-ordering)

A quasi-ordering (Q,≤) is a well-quasi-ordering (wqo) if for every
infinite sequence a1, a2, a3, . . . from Q there exist i < j ∈ N such
that ai ≤ aj .

Remark
Assume that (X ,≤) is a quasi-order. TFAAE:

1. (X ,≤) is wqo.

2. (X ,≤) is well-founded and has no infinite antichains.

3. Any extension of the relation ≤ to a linear ordering ≤∗ of X is
a well-ordering.
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Theorem
Assume that partial ordering (X ,R) is a well-quasi-ordering. Then
M(X ,R) is a well-quasi ordering, too.



Proof
Suppose (M(X ), RX

mult ) is not a well-quasi-ordering.
There is a one-to-one sequence fn : X → N of elements of M(X )
such that for i < j we have that ¬fi RX

mult fj .
Let us define

X j
i = {x ∈ X : fi (x) > fj(x) ∧ (∀y)(xRy → fi (y) ≥ fj(y))}.

0 < |X j
i | < ω.

Let x j
i be any R-maximal element of X j

i .
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For i < j

fi (x
j
i ) > fj(x

j
i ) and ∀y x j

i Ry → fi (y) = fj(y).

For n < i , j and y such that x i
n = x j

nRy

fi (y) = fj(y) = fn(y).

Consider the set X0 = {x j
0 : j > 0}. Since it is a subset of suppf0,

it is a finite set.
Define a0 to be an element of X0 such that A0 = {j : x j

0 = a0} is
infinite.
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In the n-th step of construction we have a finite sequence
(a0, a1, . . . , an−1) and a sequence of infinite sets
N ⊇ A0 ⊇ A1 ⊇ . . . ⊇ An−1 such that
∀i < n An−1 ⊆ {j : ai = x j

minAi
}.

Consider Xn = {x j
minAn−1

: j ∈ An−1} ⊆ suppfminAn−1 .
Define an ∈ Xn and An ⊆ An−1 in the way that
An = {j ∈ An−1 : x j

minAn−1
= an} is infinite.

Finally we get a sequence (an) which witnesses that (X ,R) is not a
well-quasi-ordering, since for i < j we have that ¬aiRaj .
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Theorem
Suppose that (X , <) is a dense linear ordering without minimal
element. Then M(X , <) is a dense linear ordering, too.

Corollary

M(Q, <) ' (Q≥0, <)



Theorem
Suppose that (X , <) is a dense linear ordering without minimal
element. Then M(X , <) is a dense linear ordering, too.

Corollary

M(Q, <) ' (Q≥0, <)



Thank you for your attention.


